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Abstract: A multi-layered model is considered to represent the earth’s lithosphere-asthenosphere system
consisting of two parallel layers, first one is elastic and the second one is viscoelastic, overlying a viscoelastic
half-space. They are assumed to be in welded contact. An inclined surface breaking strike-slip fault is taken to
be situated in the first layer. Stresses are assumed to be accumulated in the lithosphere-asthenosphere system
near the fault, due to some tectonic reason such as mantle convection. Analytical expressions for displacements,
stresses and strains are obtained for both before and after the fault movement, for both the layers and the half-
space. The surface shear strain, accumulation and release of shear stress near the fault and contour map for
stress accumulation in the first layer for different inclination of the fault have been computed by using suitable
mathematical techniques including integral transforms, and Green’s functions, corresponding principle and
MATLAB.
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. Introduction

From the observational results it is found that the earthquake occurs in cyclic order. Two consecutive
seismic events are generally separated by a long aseismic period. During this aseismic period there is no seismic
disturbance in seismically active regions but slow ground deformations are observed. For better understanding
of earthquake processes it is necessary to study the ground deformation during aseismic periods. Such study
may be useful for developing the suitable mathematical model for developing the earthquake prediction
program. In this paper we develop a theoretical model of lithosphere-asthenosphere system represented by a
multi-layered half-space (elastic\ viscoelastic). A wide range of theoretical models has been developed by many
authors such as Maruyama [1], Rybicki [2,3], Mukhopadhyay [4,5], Debnath and Sen [6,7,8,9], Debnath and
Sen [10,11,12], Mondal and Sen [13]. They represent the lithosphere-asthenosphere system either by an elastic/
viscoelastic half-space or by a layered viscoelastic half-space.

Il.  Formulation

We consider a theoretical model of lithosphere-asthenosphere system consisting of two parallel layers,
the first one is elastic and the second one is viscoelastic, overlying a viscoelastic half-space. The material of
viscoelastic layer and half-space are of Maxwell type. The depth of the elastic layer is h; and that of viscoelastic
layer is h,, below the free surface. These layers and half-space are supposed to be in welded contact. A plane
surface breaking strike-slip fault F with an inclination 8 with the horizontal is taken to be situated in the elastic
layer. The length of F is assumed to be large compare to its width [. The upper and lower edges of the fault are
horizontal.

We introduce a rectangular Cartesian co-ordinate system (y;, y,, ¥3) with the plane free surface as the
plane y; = 0, y3- axis is pointing into the layers and half-space, y; - axis is taken along the strike of the fault on
the free surface. For convenience of analysis we introduce another set of co-ordinate axes (y;, y,,ys) Where y;-
axis is taken along the upper edge of the fault and plane of the fault is denoted by y, = 0, so that the fault is
given by F: (y, = 0,0 < y; < [). The thickness h, of the elastic layer is taken to be greater than the width [ of
the fault. With these choice of axes the elastic layer occupies the region 0 < y; < hy, the viscoelastic layer
occupies the region h; < y; < h, and the viscoelastic half-space is given by y; = h,. The plane boundaries
between the two layers and viscoelastic layer and half-space are given by y; = h; and y; = h, respectively.
The relations between two co-ordinate system are given by
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=n
Y, = Y, sin @ + y; cos @ (1)
Y3 = —y, cos 6 + y; sin 6
Fig. 1 shows the section of the theoretical model by the plane y; = 0.

We assume that the length of the fault is large compared to its depth, so that the displacements, stresses
and strains are independent of y; and dependent on y,,y; and time t. Then the components of displacements,
stresses and strain can be divided into two groups, one associated with strike-slip movement and another
associated with dip-slip movement of the fault. Since in this model the strike-slip movement of the fault is
considered, then the relevant components of displacement, stress and strain associated with this strike-slip
movement are uy, (12, T13), (12, e13) for elastic layer, uy, (115,713), (€12, e13) for viscoelastic layer and u;,
(t12,T13) » (€12, e13) for viscoelastic half-space respectively.

2.1 Constitutive equations
2.1.1 Stress - strain relations
For the elastic layer, the stress-strain relation can be written in the following form :

T _ 6u1
12 = M50 )

_ Bul

T13 = 1 ErN

for0 <y; <h;,—0o<y, <o
where p is the rigidity of the elastic layer.

For the viscoelastic layer, the stress-strain relation can be written in the following form :

1 10\ a%uq
~+12)g, =
(nz updt) 127 auay,

1,18\ 2%u;
—+——)T =
(712 uzat) 137 atays

©)

forhy Sy; <h,,t=20,-0<y, <
where u, and 7, is the effective rigidity and effective viscosity respectively for viscoelastic layer.

For the viscoelastic half-space, the stress-strain relation can be written in the following form:

1 19\ » a2u]
(42 =2

13 p3 ot 0tdyz (4)
1,10\ _» 2%uq

—+—=)T3 =

n3 w30t otdy3

fory; 2 hy,t=0,-0o <y, <o
where u3 and n; is the effective rigidity and effective viscosity respectively for viscoelastic half-space.

2.1.2 Stress equations of motion
For a slow, aseismic, quasi-static deformation the magnitude of the inertial terms are very small compared to the
other terms in the stress equation of motion and they can be neglected. Hence relevant stress satisfy the relations

dt12 , 0713
—+—=0 (&
0y2 dy3 ®)
for0 <y; <h;,—o0o<y, <o

61',12 61',13
—=4—==0 (6
9y2 + dy3 ()
forh; <y; <h;,—0o<y, <o

0113 | 0713 __
e + By 0 (7
fory; = h,,—o <y, <o
From (2)-(7) we get
Vu, =0 (8)
for0 <y; <h;,—0o<y, <o

VZu; =0 9)
forh; <y; <h;,—0o<y, <o
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Vu, =0 (10)
fory; = h,,—0o <y, <o

2.2 Boundary conditions

Since the free surface is stress free and the layers are in welded contact then
T13 = 0 at y3 = 0
T3 =Tz aty; = hy
u; =ujaty; =h;
Tj3 = Tz aty; = hy ¢ (11)
uj aty; = h,

Uy
753 > 0asy; = o
for |y,| < o, t =0

2.3 Condition at infinity
We assume that tectonic forces result in a shear strain far away from the fault which may change with time.
Then we have the following boundary conditions

ez = (€120 + g(t)

erz = (e12)0 + g(t) 12)

erz = (e12)0 + g(t)

lim : lim , " lim
where  (e12)os = ly,| = oo (e12)or  (e12)o = ly| = oo (e12)o,  (e12)ow = lys| = oo

(e12)0, (e12)0, (e12)o are the values of e;,,e;,, e, at t =0 and g(t) is a continuous and slowly increasing
function of t with g(0) = 0. Same g(t) is taken for layers and half-space, since they are in welded contact.

(e12)o,  Where

2.4 Initial Conditions

We measure the time t from a suitable instant when the model is in aseismic state and there is no
seismic disturbance in it. (u1)g, (), (U)o, (T12)0, - - - » (€12)o are values of uy, uy, ..., ey, attimet = 0
and they satisfy the stress-strain relation (2)-(4), stress equation of motion (5)-(7), the equations (8)-(10) and
boundary condition (11) and the condition at infinity (12) for respective medium.

I11.  Displacements, Stresses and Strains in the Absence of Fault Movement
To obtain the solutions for displacements, stresses and strains in the absence of fault movement, we
take Laplace transforms of the equation (2)-(12) with respect to time t and then the boundary value problem is
converted to another boundary value problem in the transformed domain. Solving this boundary value problem
we get the solution in transformed domain. Taking Laplace inverse transformation of the obtained results, we
get the solution as:
uy = (ug)g +¥29(0)
T12 = (T12)o + 119 (1)
713 = (T13)0
e = (e12)o + 9(t)
7.’ = Stress components which tends to cause
strike — slip movement across the fault F
= 145 Sin O — 143 cos O
= (71’2’)0 + p, sin6 g(¢)
for elasticlayer 0 < y; <h;,—o0o <y, <o

L (13)

and
uy = (up)o + ¥28(1)
t

2 (t — T)} dr
2

T2 = (T12)0€xp (_ %) + 1 f g1(T)exp {_ (14)
0

' , [.lzt
T3 = (T13)0€XP <— _)
N2

for viscoelastic layerh; <y; <h,,—0o <y, <o
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uy = (ug)o + ¥,8(1)

t
’ g Hat 3t —1)
T12 = (T12)o€XP (— i) + u3 f g1(T)exp {— 3—} dr
M3 J 13

L (15)

" " ,u3t
T3 = (t13)0exp (——
n3

for viscoelastic half — space y; = hy,—0o <y, < o
where g, (t) = :T{g(t)}' From (13), (14) and (15) we find that both 7,, and 7, increase with time. When the

accumulated stresses exceeds some threshold values the fault F undergoes sudden movement resulting in an
earthquake.

V. Displacements, stresses and strains after the restoration of aseismic state following a sudden
strike-slip movement across the fault

It is to be noted that due to a sudden fault movement across the fault F, the accumulated stress will be
released to some extent and the fault becomes locked again when the shear stress near the fault has sufficiently
been released. The disturbance generated due to this sudden slip across the fault F will gradually die out within
a short span of time. During this short period, the inertia terms cannot be neglected, so that our basic equations
are no longer valid. We leave out this short span of time from our consideration and consider the model afresh
from a suitable instant when the aseismic state re-established in the model. We determine the displacements,
stresses and strains after the fault movement with respect to new time origin t = 0, so that all the equations (2)-
(12) are also valid.
The sudden movement across F is characterized by a discontinuity in u; and the discontinuity of u; across F is
defined as:
[w,] = Uf (y3) across F (y, = 0,0 < y3 < 1) (16)

lim lim N . . . .
where [u,] =y Lot Ty 50" u; and f(y;) is a continuous function of y; and U is constant,
independent of y, and y;. All the other components uy,u;, iz, ,ejs are continuous everywhere in the
model.

We try to obtain displacement and stresses for t > 0 (i.e. with respect to new time origin) after the
movement across F in the form

u = (w1 + (w1,
T2 = (T12)1 + (T12)2
713 = (T13)1 + (T13)2
ez = (e12)1 + (e12)2

uy = (up)g + (uy),
Ty = (T12)1 + (T12)2
T3 = (T13)1 + (T13):2

(17)

uy = (u)y + (uy),
Ty = (1)1 + (712)2
713 = (113)1 + (713)2 )
where (uq)q, (T12)1, -+ , (t13), satisfy all the equations (2)-(12) and continuous throughout the medium while
(Uq)2, (T12)2, 0+ , (t13), satisfy all the above relations (2)-(11) and also satisfy the dislocation condition (16)
together with

(e12), 2 0 l
(eiz)z -0
p 8
(e12)2 >0 18)
as |y,| » o, t = O)
Then,
(w1 = W)y + 2.9 )
(T12)1 = (T12)p + 11 9(0)
(t)r = (T2, ¥ 19)
(e12)1 = (e12), + g(@®) )
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() = (ui)p + ¥.8(0)

t
) . Ut U, (t — 1)
(T12)1 = (T12)pexP (— i) + U f g1(t)exp {— ZT} dt
0 (20)
' , Uyt
(t1i3)1 = (T13)pexp (_ i)
M2
(up); = (u{)p + ¥,8(t)
t
" p ust us(t — 1)
(t12)1 = (T12)pexP (— %) + U3 f g1(t)exp {— 37} dt
0 r(21)
, ” Ust
(t1i3)1 = (T13)pexp <_ i)
13
where (u1),, (T12)p, ,(T13), are the values of (u;)q, (T12)1, ,(t1,)1 respectively at t = 0 (i.e. new
time origin).
To obtain the solutions for (u;),, (t12)g, ,(t13), for t > 0 we take Laplace transformation of the
equations which satisfy the equations (2)-(11) and the dislocation condition (16) and condition (18), with respect
to time t. The resulting boundary value problem involving (i), (#1)32,...., (T13)2, Which are the Laplace
transform of (uy)y, (T12)2, , (t13), respectively with respect to time t, can be solved by using a modified

Green’s function technique developed by Maruyama [1] and Rybicki [2,3] and correspondence principle. The
Green’s function for multilayered model are developed by Rybicki [3] and we use these results after some
necessary simplification. On taking inverse Laplace transformation, we obtain the solutions for

(U1)2, (T12)2, - ,(t13), for t = 0. The complete solutions for uy, uy,......, 743 are obtained as follows:
U
w (2, y3, ) = (W), +y29() + %1/11()’2,}’3,0
U

T12(V2, ¥3,8) = (T12)p +119(0) + ﬁlpz(yz,y&t)
mU
T13(V2, Y3, 1) = (T13), +ﬁ¢3()’2:3’3:t) c (22)

U
e12(¥2,¥3,t) = (e12), + g(t) +E1/’2(YZ'3’3¢)

_ . U .
Ty = (Tl'z')p +ug9(t)sin6 + o (Y, sin@ — Y5 cos B)
For elasticlayer 0 < y; < hy, |y,| <
. , U
w (2, ¥3,t) = (Ug)p +¥2800) + Ed’l (y2,¥3,8)
' , Hzt
T12(V2, Y3, t) = (T12),€xp N +

o (t — r)} ' (23)
n2

t
U
i [ e - dr +— 6,072, 75,0)
0

' , ,let U
T13(¥2, ¥3, t) = (t13)p€xp (‘ E) + ;¢3(}’2'3’3, t)

For viscoelastic layer hy < y3 < hy, |y,| < ®
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. ) 2U
wy (¥2,¥3,t) = (ug), + .80 + — 2, ¥3:1)
" " ,Ll3t
T12(V2,¥3, ) = (T12)€XP . +

ugfgl(f)exp{ st T)}dH—Xz(yz,yg,t) @9
n3

ust 20
T13(y2, y3,t) = (T13)pex29 <— 77_> + —X3 (2, ¥3,t)

For viscoelastic half — space y; = hy, [y,| < ®
Where 1 (y2,¥3,t), ¥W2(V2,¥3, ), W3(V2,¥3, ) 1 (Y2, ¥3,8), d2(V2,¥3,0), P3(V2,y3,.t) and xy (v, ¥3,t),

X2(¥2,¥3, 1), x3(¥2, y3, £) are given in Appendix.
For locked fault, analytical investigations show that the displacements, stresses and strains will be

finite and single valued everywhere in the model including the tip of the fault F if the following sufficient
conditions are satisfied by f(y3)

(i) f(v3) and f'(y; ) are both continuous function of y; for0 < y; < L

(ii) f() = Oand f'(0) = f'() = 0.

(iii) Either f"(y;) is continuous in 0 < y; < [ or f"(y3) is continuous in 0 < y; < [ except for a finite
number of points of finite discontinuity in 0 < y; < L or f"(y;) is continuous in 0 < y; < [ except possibly
for a finite number of points of finite discontinuity and for the end points of (0, 1), there exist real constant m,n
both < 1 such that (y3)™f"(y3) — 0 or to a finite limitas y; —» 0+ 0and (I — y; )"f"(y;) — Oortoa
finite as limit y; — [ —0.

These conditions imply that the displacements, stresses and strains will be bounded everywhere in the model.

IV.  Numerical Results And Discussion
To study the surface displacements, surface shear strain accumulation or release and the shear stress near fault

, 2 _2y2
tending to cause strike-slip movement, we choose f(y3;) = @31# for which displacements, stresses and

strains remain finite, everywhere in the model. The following values of the model parameters are taken for
numerical computations : I = 10 km. is the width of the fault F, hy = 40 km., and h, = 300 km. from free
surface, representing the upper part of the lithosphere and the upper part of the asthenosphere respectively.
;= 0.63 x 10'2 dyne/sq.cm., p, = 0.75 X 10'2 dyne/sq.cm., u; = 2.42 X 102 dyne/sq.cm., 1, = 3 x
10%! poise, n; = 3.5 x 102! poise, U = 40 cm., is the slip across the fault F and for the function g(t) = kt,
we take k = 3.2x 107'*, These values are taken from different books and research publications (e.g.
Cathles[14], Clift [15], Karato [16], Bullen and Bolt [17]).

For numerical results we compute the following quantities:

(i) The residual surface shear strain due to fault movement near the fault one year after the time of restoration of
aseismic state

Ei, = [erz — (e12)p — 9(®)]y3=0,=1 year

U
= 51/’2 (2, y3, 1)
(if) Change in shear stress near fault F due to movement across F:
Ty = 19 — (T12)p — 119(t)

=Y sin -y cos0)
- 2T 2 3

The magnitude of the residual surface shear strain is found to be of the order of 107 which is in conformity
with the observed result. However the strain pattern depends upon the fault parameters. In Fig. 2 the strain
curve is symmetric about the fault line for vertical fault and the maximum strain occurred at y, = 0. As the
inclination of the fault with the horizontal increase then the value of y, where the maximum strain occurred

increases, e.g. when 6 = g the maximum strain occurred at y, = 2 km. and when 6 = % the maximum strain

occurred at y, = 3 km.

In Fig. 3-5 the region of stress accumulation and release has been shown due to the fault movement
across F, for different inclination 8. The region marked by ‘R’ is the region of stress released and while region
marked by ‘A’ is the region of stress accumulation. Thus if a second fault were situated in region ‘R’ a
movement across F will result in reduction of stress near the second fault. Thus a possible movement across the
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second fault will be delayed due to the movement across F. On the other hand if the second fault be situated in
the region ‘A’, a movement across F will enhanced the rate of stress accumulation near the second fault and
thereby a possible movement across the second fault will be advanced. If h, = 0, the Fig. 6, is quite different
from the previous three figures. Fig. 6 represents the accumulation/ release region due to movement across the
vertical fault F with the model in which viscoelastic layer is absent (i.e. h, = 0). We may observed the
difference of accumulation/ release region on comparing with Fig. 3, 6 = % when the viscoelastic layer is
present.

The contour map of shear stress for 8 = gand 6= % has been shown in Fig. 7 and 8 respectively.

V.  Conclusions
To understand the mechanism of stress accumulation in a seismically active region, modeling of
observed ground deformation during the aseismic period has important role. The rate of stress accumulation/
release under the action of the tectonic forces and the effect of fault movement on the nature of stress
accumulation pattern during the aseismic period, (being the preparatory period for the next major seismic event),
may give us more insight into the earthquake mechanism. Such studies are useful in formulation of an effective
program of earthquake prediction.

VI.  Appendix
Displacements, stresses and strains after the restoration of aseismic state following a sudden strike-slip
movement across the fault:
The displacements, stress and strains for t > 0 with new time origin after restoration of aseismic state followed
by a sudden movement have been found in the form given by (17) where (u;), (t12)1, -+, (t13); are given by
(19)-(21) and (uy)y, (T12)5, -, (t13), satisfy (2)-(11), (16) and (18). To obtain the solutions we take Laplace
transformation of these relations with respect to t and we get

9(u1)2

%)
25)
_ a(r1)2 (

(T13)2 =t ——— Iys

(T12)2 = ———=

fOrOSYg Shl,—OO<yZ < 00

_ 6(u )
(T12)2 = i ——2 —=2 (26)
_ 6(u )
(T13)2 =l —z
forhl SY3 Shz,—OO<yZ < o0
_n _ B(ul)z
(T12)2 = i3 Iy,

(27)
(T13)2 = i3 02;)2

fory; = hy,—0o <y, <o

where i, = > and ji; = 5+

. a(_u2)+nz PEAFE]
T12)2 713)2

—=4+—"==0 28
dy2 + dy3 (28)

fOFOSYg Shl,—OO<yZ < 00

a(fiz)z + 6(‘?’13)2 —

9y2 dy3 0 (29)

forh; <y; <h;,—0o<y, <o

a(frlrz)z + 6(?{3)2 —

9y2 dy3 0 (30)

fory; 2 hy,—0o <y, <o

VA(dy); =0 31)
for0<y; <h;,—o0o<y, <o
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V2(ii;); = 0 (32)
forh; <y; <h,;,—0o<y, <o

Vi(@), =0  (33)
fory; 2 hy,,—0o <y, <o

(T13); =0aty; =0
(T13)2 = (5'13)2 aty; =h;
(@), = (T), atys = hy
(T13), = (%13), atys = hy

(@), = (@), atys = h,
(T13), > Oasyz = o

~~

(34)

for |y,| <o

(é12)2 — Ol
(€12),~ 0
(€"12), > 0 (39)

as |y,| =
and

[(@)2] = f(y5) across F: (v, = 0,0 S y; S 1) (36)
where

and p being the Laplace transform variable.

The boundary value problem (25)-(36) can be solved by using modified form of Green’s function
technique developed by Maruyama [1] and Rybicki [3] with correspondence principle and following them we
get

()2(Qq,P) = ] [(@1)2 (P){G121)(Q1, P)dx3 — Gi31y(Qq, P)dx,} (37)

F

(@)2(Q2, P) = j [@0)5 (PY G20 (@, P)dits — Gy (0, P} (38)
F

(1)2(Q3,P) = f[(ﬁl)z(P)]{G%z(g)(Q&P)dx3 - 6113(3)(Q3,P)dx2} (39)

F
where Q1 (v1,¥2,¥3), @271, ¥2,¥3), Q3(¥1,¥2,y3) are the field points in the first layer, second layer and half-
space respectively and P (xq, x,, x3) is any point on the fault F and [(u,),(P)] is the magnitude of discontinuity
of wu, across the fault F and

[@)2(P)] =~ f(xs)  (40)

Suppose P (x;, x5, x3) is any point on F with respect to origin 0'(0, 0, 0) and P(xy, x,, x3) is any point on F with
respect to the origin O, they are connected by the relations

X1 =%
X; = X, Sinf + x5 cos O (41)
X3 = —X5 €0S O + x5 sin
OnF:x, =0,0<x3 <l Sodx, =0.
Therefore,
X1 = %

X, = x3c080,dx, = cosOdx;; (42)
X3 = x35inf,dx; = sin 0 dx;
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i Ul oo o ,
(t)2(Q1, P) = ;J-f(x3){612(1)(Q1'P) sin @ — G{3(1)(Q1, P) cos 0}dx; (43)
0
. Ul oo o '
@202, P) = 5 [ F5){Gh(@arP)sin 6 = Gl Qo P) cos O} (44)
0

l
p— U ' 1 . 1 ’
@):(05,P) = 5 [ PG5 PYsin 6 = Gl (@5, P) cos )z (45)
0

Where
r )
Gir1y(Q1, P) = f[Al(/De_l” + B; ()e?3] sin[A(x, — y2)] |
0 } (46)
_i X2 = Y2
21 (xp — ¥2)% + (x3 — ¥3)? J
6113(1)(Q1:P) = J[Cl(/l)@_)ly3 + Dy (M)e?3] cos[A(x; — ;)] dA
0 47)
_i X3 — Y3 |
w27T (2 —¥2)? + (x5 — ¥3)? J
G112(2)(Q2»P) = f[Az(A)e_ly?’ + B,(M)e*3] sin[A(x, — y,)] dA (48)
0
G113(2)(Q2:P) = f[Cz (De™3 + D, (De?3] cos[A(x, — y,)]dA (49)
0
Ghay @ P) = [ [As@e™ + By (e sinlAGx, - y)] d2 (50)
0
Gl (@ P) = [ [650e™5 + Dy )] coslat, = 7)1 dA (51
where ’
|G+ D@ + 1)el@hi+2ha=xs) +]
Ay =—

2mha | (71 + 1), — Det@hitrs) —

(71 — DGz + 1)eZhatxs)
1[G+ D@ — D[etEt) 4 o)) 4
A, (]71 _ 1)(.}72 + 1)[el(zhz+X3) + el(zhz—X3)]

T 2nA,
Az — (}72:1) el(2h1+2hz+X3) + el(2h1+2h2—X3)]
TA2

;{ (1 — D7, — Dethi—=s) —

1 (52)

F2-1) -
BZ — ;Tz[el(zhl-l-x:g) + eﬂ(zhl Xg)]

2 —
A3 — _T[el(2h1+2h2+xg) + el(2h1+2h2 xg)]
TA2

Continued equation (52)
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[()71 + 17, + 1)6’1(2h1+2h2—x3) +]
L | Gr— DG, - el 4

C = —
! 2mh | (7 + D7, — DetCritra) 4|
71— D, + Der@hars) |
D = 1 (]71 + 1)()72 _ 1) [el(2h1+)€3) _ el(zhl—X3)] +
1= 21A, ()71 _ 1)(]72 + 1)[6/1(2h2+X3) _ el(th—x3)]
CZ — (]72 + 1) [eﬂ(2h1+2h2+)€3) _ el(2h1+2h2—X3)]
TTAZ
(y2—1
D s 7 /I(Zhl—x3) _ l(2h1+X3)
2 T[AZ [e € ]
C3 — i [el(2h1+2h2+X3) — el(2h1+2hz—X3)]
A,

Along the fault x, = x5 cos 8 and x; = x5 sin 6. So the equation (52) becomes

[(7; + 1) (7, + 1)er@hi+2zha=x3sin 0) 1]
1 | 71— D, - 1)e/1(4h1—xg sing) _ |
o | 7+ DG, - 1)e/1(2h1+xg sin ) _ |
1 — D (Jy + 1) (2ha+xssin 6) |

7+ D7, —1) [ez(zhﬁx; sin 0) 4 pA(2h1—x} sin 9)] +

A1:_

1

1= 5 . . > (53)
2 (7 - D, + 1) [el(2h2+X3 sin 8) 4 oA(2hz—x3sin 9)]
A, = — D [el(2h1+2hz+xé sin 0) 4 A(2h1+2hz—x3sin e)]
z T[Az
B, = 02-1) el(2h1+xé sin 9) + el(Zhl—xé sin 9)]
2 mAy

Ag = _n%[ez(zh1+2h2+x§ sin 0) 4 gA(2h1+2hy—x3 sin 9)]

2

Continued equation (53)
i+ D, + 1)e1(2h1+2hz—x§ sin 6) 4
1 1 =D, — 1)3'1(4h1—x§ sin ) 4
_FAZ 1+ D, — 1)3'1(2h1+x§ sin ) 4
-G+ 1)3/1(2h2+x§ sin )
1 [+ DGz -1 [81(2}11”é sin 6) _ pA(2h1—x3sin 9)] n
. 2 i -DG+1) [6’1(2}12”5 sin 6) _ pA(2hz—x3 sin 9)]

G

D1=

C, = 02+ [ez(2h1+2h2+x§ sin 0) _ gA(2h1+2ha—x5 sin 9)]

2 A,
D, = -1 [eA(Zhl—xé sin @) _ e/l(2h1+xé sin 6)]
2 A,
C. = i[el(2h1+2hz+x§ sin 0) _ pA(2h1+2hy—x3 sin e)]
3 A, )
where
Ay = (7 — DM [+ D + (7 — DePM] + (54)
(72 + De?2[(7 — 1) + (7 + De?M]
dy, = I'_‘_Z' Vo = I'_t_3
andr M1 Y2 2
Now

DOI: 10.9790/0990-0405033958 www.iosrjournals.org 48 | Page



A Sudden Movement across an Inclined Surface Breaking Strike-Slip Fault in an Elastic Layer

A;(De 3 + By(Mers =
[()71 + D, + 1)31(2h1+2h2—x}, sin 6) +-|
;l ()71 - 1)(]72 — l)el(dfhl—x? sin§) _ Ie_/ly3 s
27TA2| v+ D, - 1)3’1(2h1+x3 sin§) _ |
()71 - 1)(]72 + 1)6/1(2h2+xé sin ) J
L i+ DG -1 [eA(2h1+x§ sin 6) 4 oA(2h1—x3sin e)] + )

21 Ay 7 —DF, + 1) [el(2h2+xé sin ) + el(th—xé sin 0)]

\ (55)

Y3

First part of (55)

(71 + D72+ 1) o (2h1+2hy—x3 sin 6-y3) +_
A,

1 —D@F2—-1) e,1(4h1—xé sin 0—y3) _

__1 Ay
2n|] (+DG2 -1 oA (2hy+xgsin 0-y3) _

A,

(i —DG+ D) ea(zhz+x§ sin 6—y3)
A,

Now second part of (55)

I(Vl + 1)()72 ) [el(2h1+xé sin 0+y3) + e/l(Zhl—xé sin 6+y3)] +
0
21 | ()71 - 1)(]72 + 1) [el(2h2+xé sin 6+y3) + el(th—xé sin 0+y3)] |
\ Ay )
Now
i+ DG +1) e 2hith)
A, T M
71— DG — 1) ace 2 m+h)
A, - M
G+ DG —1)  ae )
A, - M
(71— D@ +1)  ge 2Ahith)
A, - M
Where M = 1 + @ e 22 + @,¢e 2 (h2a=h1) 4 ¢ =21 g, = Z—: and & = 2—:

Now the term |@,e 242 + g, ;e ~24(h2=h0) 4 ¢, e=24h1| < 1 (Mondal and Sen [13]) and we can express M as
an infinite geometric series and neglecting the higher order term and we get
[_ {e"l("é sin 6+y3) + alfle—l(2h2—2h1+xé sin 6+y3) _} N

| = —A(th—xé sin 9+y3) A —A(Zhl—xé sin 9+y3)
—2 21 _ 1 a,e c1e
A1(D)e™% + By (A)e™ = 2nM| = —A(2hy—x3sin 0-y3) 4 = ,—A(2ha+xssin O—y3)
| a,e 27X3 3) + aye 2+x3 y3) 4
l C—,le—)l(Zhl—xé sin 0—y3) + Ele—l(2h1+xé sin 9—y3)

Expanding M as in infinite Geometric series and putting the value of A;(1)e™”3 + B;(4)e*3 in the equation
(46) and integrating we get

|
I (56)
|

DOI: 10.9790/0990-0405033958 www.iosrjournals.org 49 | Page



A Sudden Movement across an Inclined Surface Breaking Strike-Slip Fault in an Elastic Layer

1 dq aic1dq c1dq
2 [_ d2+d? | (d—2hy+2h3)2+d? | (d+2h1)2+d?
aidq ajic1dq d%(fldl
(d+2hp)2+d? - (d—2h1+2h2)2+d?  (d—2h1+4hp)2+d}
E%E%dl dlf%dl aidq
(d+4hy—4h1)2+d? | (d+2h3)2+d? | (dz+2h2)2+d?
d%dl d%(fldl ajic1dq
(dg+4h2)2+d?  (dg—2hi+4h3)2+d?  (dg+2hq+2h3)2+d?
c1d1 aijcidy cfaydy
(dg+2h1)2+d?  (da+2hi+2hp)2+d?  (dz+2hz)2+d?
Gl _ ¢ty aidy _ atd _ (57)
12(1) (d2+4h1)2+d} = (2hy—d)2+d}  (4hp—d)2+d7
ajcydy aicidy apdy
(4hp—2h1—d)?+d?2  (2hi+2hy—d)2+d? | (2hy—d3)?+d?
atdq (i%(fldl aic1dq
(4hp—dz)2+d?  (4hy—2h1—d)2+d?  (2hq+2hz—dz)2+d?
¢1dq aic1dq Elf%dl
(2h1—d)?+d?  (2hi+2hs—d)2+d?  (2hy—d)2+d?
5%611 ¢c1dq aic1dq
(4h1-d)2+d? | (2hi-d3)?+d?  (2hp+2hi—dz)2+d?
dlf%dl E%dl dq
(hy—d3)?+d?  (4h1—dz)2+d? d%+d%]

where d = x5 sinf + y3, d; = x3c0s0 — y,, d, = —x5sinf + ys.

Similarly we can calculate the terms Gy, Giz3y Gizay Gizgy» Gizy and putting these values of
Gla(1ys-eemome , Gi3(3, in the equations (43)-(45) and we get
— U +
@)2(Q1) = =102, v3,0) |
_, U
(@"1)2(Q2) = —$1(¥2,¥3,p) L (58)

(@")2(Q3) = %)?1()’2')’3:P)J
where
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!

_ f(x3) [(v,sin@ + y;cos8) & {y,sin@ + (y; + 2h;) cos 6}

lpl(YZ;Y3;p):f A - A -
0 p 01 02

a,{y, sin@ + (y3 + 2h,) cos 6} a?c,{y, sin6 + (y; + 4h, — 2h;) cos 6}
Ags Aopg
arct{y, sin@ + (y; + 4h, — 4h;) cos 0} B a,c*{y, sin@ + (y; + 2h,) cos 6} N
Aos Ags
a;{—y,sin@ + (y3 + 2h,) cos 8} a?{—y, sin@ + (y; + 4h,) cos 6}
Aos Apz
azé,{—y, sin0 + (y; + 4h, — 2h;) cos 6}
Aog
a6, {—y, sin0 + (y; + 2h, + 2hy) cos 6} N
Ago
¢ {—y,sin0 + (y; + 4hy) cos 6} B a;¢c{—y, sin + (y; + 2h, + 2h;) cos 6} B
Ao Agg
a,ct{—y,sin@ + y; cos 6}  cZ{—y, sinf + (y; + 4h,) cos 6} N
Aoe Aqy
a;{—y,sin@ + (2h,—y;) cos 8} ai{—y, sinf + (4h, — y3) cos 6}
App Az
a?c;{—y, sinf + (4h, — 2h; — y;) cos 6}
Avy (59)
a6 {—y, sin0 + (2h, + 2hy — y3) cos 6} N a;{(x3 cos 8 — y,) sin 6}
A15 A16
a?{(x; cos@ —y,)sin8} az¢;{(x; cos@ — y,) sin 0}
A7 Ag
C_llEl{_yz sinf + (th + Zhl - y3) Cos 9} "
Ass
¢1{(x3 cos @ —y,)sin0} @, {—y,sin6 — (2h, + 2h; — y;) cos 6}
Ay Ajg
a,c{—y, sin@ + (2h,—y3;) cos 8} c*{—y, sin6 + (4h,—ys) cos 0} N
Ay Ay
¢1{=y,sin@ — (2h;—y3) cos 8} @, ¢, {(x3 cos — y,) sin 6}
Az Ajg
a,;ct{—y,sin@ — (2h,—y;) cos 8} c*{—y,sin@ — (4h,;—y;) cos O}
Azs Ay
{—y,sin@ + y; cos 8} a,;{(2h; — y5 + x5 sin @) cos O} N
A25 A23
az{(4h, — y; + x5 sin6) cos 6} N azc,{(4h, — 2hy — y5 + x5 sin @) cos 6} N
A26 A27
a,¢,{(2hy + 2h; — y; + x5 sin @) cos A} N ¢ {(2h; — y; — x5 sin0) cos 6} i

X3
Aqg Azg J
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!
1 (V2. y3,0) = Off(xé) [(x3 cos 6 — y,) sin® {—m X

<1+1 1 1)+ a, (1+1 1 1)+
Bo1  Boz Boz B P()7+1)_ Bos  Bos Bo7  Bog

a,Cq <1+1 1 1>+ C1 (1+1 1 1)}
p(y+1\By By Bys Bog/ p(y+1)\Byy B, Biz By
1 {(y3 —x3sin@)cos®  (y; + x5 sin ) cos 9}
p(r1 +1) By, By
a, {(th —y3 +x3sin6)cosf (2h, —y; — x5 sinH) cos H
p(ri +1) By, Bys
(2h, + y3 — x5 sin @) cos O N (2hy + y3 + x5 sin @) cos 9} N
Bys By
az {(4h2 —y3 +x3sin@) cos® (4h, — y; — x5 sin B) cos 0} N
p(r1 +1) Byg By
24 {(Zhl +y;3 —x3sin@)cos® (2h; + y; + x3 sinH) cos 9} N

(60)

p(r1 +1) By By,
a, ¢ {(th —2hy +y; — x3sin6) cos O _@hy =2 4y + x3 sin 0) cos @ N
p(r1 +1) By Byg
(2hy + 2hy — y; + x3 sinf) cos O _ Q@hy+2h -y — x3 sin 0) cos 0} N
Bi4 Bi3
aze {(4h2 —2h; — y3 + x3 sinf) cos @ _ (4hy —2hy —y; — x3 sin 0) cos 9}] .
p(r1 +1) Bis Bio ’

and

B B l , s - 1 1 1
1 (2, y3,0) —Off(xa) [(x3 cos§ — y,) sin {_p()71+1)(]72+1) (B_()l+B_()2)

a, 1 1 a,c 1 1
+— — <—+—>+ — — (—+—>+
p(¥+ D2+ D \Bys  Bog/ pr+ 12+ 1) \Byy By

& 1 1
PG+ D +1) (3_11 * B_lz>} -
_ 1 _ {(y3 — x5 sin8) cos 6 3 (y3 + x3 sin @) cos 9} N (61)
p(ri + DG+ 1) By By
a, (2h; + y3 — x3sin@) cos®  (2h, + y53 + x5 sin @) cos O
p(r1 + V(2 + 1){ Bys - Bos }+
a,¢, (2h, — 2hy +y; — x3sinf) cos® (2h, — 2hy + y5 + x5 sinf) cos 6
p(ri + D@2 + 1){ By - Byo } *
_ ¢ _ {(Zhl + Y3 — x5 sin @) cos @ ~Qhitys + x5 sin @) cos 9}] .
p(ri + D2+ 1) By By, ’

Taking Laplace inversions of (58) we get

u )
(u1)2(Q0) = EV&Q’Z,}’& t)
U
(u')2(Q) = E¢1(}’2,3’3,t) &(62)
2U
(u")2(Q3) = 7)(1(3’2;3’3;15)J
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where y; (2, ¥3,), $1(¥2, ¥, £) and x1 (v, s, t) are the Laplace inversions of {1 (v, ys, p), $1(2, ¥3,p) and
X1 (y2,y3,p) respectively.

Now
_ mU 0 — )
(T12)2 = ﬁa—yz%(h,}%,l’) |
mU o _ (63)
(T13)2 = 5=—5—V1(v2,y3,p)
2w 0y; J
_ pU 0 —
(T12)2 = — 5512, ¥3,p)
V3 6y2
U _
= ;d’z(}’z:}’&p)
LU 9 - > (64)
(T13)2 = —5—01(v2,y3,0)
m 0y3
U _
= ;¢3()’2:}’3'P)
. a320 0 _
(T12)2 = ——X1(V2,¥3,0)
0y,
2U _
= 7Xz(yz,y3,p)
. @2U d [ (65)
@T13)2 =——11(v2,y3,p)
m  0y3
2U _
= ;X3(y2,y3,p)
Taking Laplace inversions in the equations (63)-(65) we get
wUu o
(t12)2 = zl—nalpl()%)’&t)
U
= EIPZ(YZ,YB’J)
mU 0 (66)
(t13)2 = Ealpl(}’z,)’&t)
mU
= ﬁd&(}’z:%:t)
, U
(t12)2 = E‘Pz()’z;}@t)
U (67)
(t13)2 = ;¢3()’2,3’3,t)
" 2U
(t12)2 = 7)(2(}’2:3’3'0
(68)

" 20
(t13)2 = 7)(3(3’2:3’3' t)
where the expressions for ¥, (y2,3,t), ¥2(V2,¥3, 1), Y32, ¥3,8); $1(¥2,¥3, ), d2(¥2,¥3,8), P3(¥2, ¥3,0);

X102y3t), 22y t), x3(V2,y3,t) are obtained from vy (y2,¥3,p), ¥2(¥2,¥3.0), Y3(¥2,¥3,P);

12, ¥3,0), $2(02,¥3,0), $3(V2,¥3,0); X1 (V2. ¥3,0), X2(V2,¥3, ), X3(¥2,¥3,p) respectively by taking
inverse Laplace transform.

Hence we get the complete solution given by (17).

Where
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Ag; = (x35in0 + y3)? + (x5 cos @ — y,)? )
Agy = (2hy + x35in 6 + y3)? + (x5 cos  — y,)?
Aoz = (2hy + x5 5in 0 + y3)? + (x3 cos 6 — y,)?
Ags = (4hy — 2hy + x5 5in 0 + y3)% + (x5 cos O — y,)?
Ags = (4hy, — 4hy + x5 5in0 + y3)% + (x5 cos O — y,)?
Age = (2h; — x5 5in 6 + y3)? + (x5 cos 6 — y,)?
Ag; = (4hy — x5 5in 6 + y3)? + (x5 cos 6 — y,)?
Agg = (4hy — 2hy — x5 5in 6 + y3)? + (x5 cos @ — y,)?
Ago = (2h, + 2hy — x5 5in 0 + y3)% + (x5 cos 8 — y,)?
Ay = (2hy — x35in 0 + y3)? + (x5 cos O — y,)?
Ay = (4hy — x3sin 0 + y3)? + (x5 cos O — y,)?
Ay, = (2hy — x5 5in 0 — y3)? + (x5 cos 8 — y,)?
Az = (4hy — x5 5in0 — y3)? + (x5 cos 8 — y,)?
Ay = (4hy — 2h; — x55in 0 — y3)? + (x5 cos § — y,)?
Ays = (2hy + 2hy — x55in 0 — y3)? + (x5 cos 6 — y,)?
Aig = (2hy + x5 5in 0 — y3)? + (x5 cos 8 — y,)?
A7 = (4hy + x5 5in 0 — y3)? + (x5 cos 8 — y,)?
Ayg = (4hy — 2h; — x35in 0 — y3)? + (x5 cos § — y,)?
Ayg = (2hy + 2Ry + x535in 0 — y3)? + (x5 cos § — y,)?
Ayo = (2hy — x5 5in 0 — y3)? + (x5 cos 8 — y,)?
Ay = (4hy — x5 5in 0 — y3)? + (x5 cos 8 — y,)?
Ay = (2hy + x5 5in0 — y3)? + (x5 cos 8 — y,)?
Ay = (2hy + x5 5in 0 — y3)? + (x3 cos 6 — y,)?
Ay = (4hy + x35in6 — y3)? + (x5 cos  — y,)?
Azs = (x35in 0 — y3)* + (x5 cos 6 — y,)*
Az = (4hy + x5 5in0 — y3)? + (x3 cos 6 — y,)?
Ay; = (4hy — 2hy + x5 5in6 — y3)? + (x5 cos @ — y,)?
Ayg = (2hy — x35in 6 — y3)? + (x5 cos @ — y,)?

 (69)

and

Byy = (y3 — x5sin6)? + (x5 cosf — y,)?
By; = (y3 + x5 sin8)? + (x5 cosf — y,)?
Bys = (2hy; — y3 — x5 sinf)? + (xj cos 6 — y,)?
Bos = (2hy — y3 4+ x4 5in8)? + (x5 cos 6 — v, )?
Bos = (2hy + v3 — x4 5in8)? + (x5 cos 6 — y,)?
By = (2hy + v5 + x5 sinf)? + (xi cos 6 — y,)?
By7 = (4hy — y3 — x4 5in8)? + (x5 cos 6 — y,)?
Bog = (4hy — v3 + x4 5in@)? + (x5 cos 6 — y,)?
By = (2h; — 2hy + y3 — x58in0)? + (x5cos8 — y,)?
Byy = (2h; — 2hy + y3 + x5 8inf)? + (x5 cos 8 — y,)?
By, = (2hy +y; — x5 sin @)% + (x} cosf — y,)?
By; = (2hy +y; + x5 sin )% + (x} cosf — y,)?
By = (2h; + 2hy — y3 — x5sinB)? + (x5 cos 8 — y,)?
By, = (2h; + 2hy — y;3 + x5 sinf)? + (x5 cos 8 — y,)?
B,s = (4h; — 2hy — y3 + x5sin0)? + (x5 cos 6 — y,)?
By; = (4h; — 2hy — y3 — x5 sinf)? + (x5 cos 8 — y,)?

(70)
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Fig. 1: Section of the model by the plane y; = 0.
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Region indication for pesitive and negative accumulation of shear stress
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Fig. 4 Region of accumulation (A) and release (R) of shear stress in the first layer for 6 = g
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Fig. 5 Region of accumulation (A) and release (R) of shear stress in the first layer for 6 = %.
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Fig. 6 Region of accumulation (A) and release (R) of shear stress in the first layer for 6 = %and /i, =0.
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Contour plot of shear stress
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Fig. 7 Contour map of shear stress in the first layer for 8 = >

4 Contour plot of shear st

ress

= Y
<

«—Depth yg in km.

20
-10 -5 0 5
Distance y2 — in km.

T

Fig. 7 Contour map of shear stress in the first layer for 6 = 3
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